
flashserver External for Max/MSP

Version 1.1

Written by Olaf Matthes.
Copyright © 2002-2006 Olaf Matthes – All rights reserved.

Content

Overview 3

Thanks 3

The flashserver External 4

Creating the Object 4

Inlets and Outlets 4

Supported Methods 5

Examples 7

ActionScript and Network Sockets 7

Sending from Flash to Max/MSP 8

Parsing Data received from Max/MSP 11

Installation 12

System Requirements 12

Installing flashserver 12

License 13

License Agreement 13

Disclaimer of Warranty on Software 13

Limitation of Liability 13

Overview

The goal of this document is to describe the features and possibilities that the
flashserver external adds to the Max/MSP environment and Macromedia Flash.
This document assumes some familiarity with Max from a user’s standpoint as
well as knowledge of Macromedia Flash and it’s ActionScript language.

The basic functionality of flashserver is to establish a connection between
Macromedia’s Flash - be it a standalone projector or a web Plug-In - to
communicate with Max/MSP. The TCP/IP socket connection that gets created
allows to exchange data between both programs in either direction over local
network or the internet. It thus allows to build interactive web front-ends to
Max/MSP or Max-controlled animations in Flash.

Due to it’s capability of relaying data sent from one client to all other connected
clients, even without any deeper Max knowledge, flashserver can be useful when
building multi-user web interfaces. Using the broadcast message to send data to
all connected clients from within Max/MSP allows to set up a system where for
example the internal state of a Max patch is displayed to all connected users.

In the past years flashserver has proven it’s stability and usefulness in several
online projects. Among these are Pall Thayer’s PANSE and the Streaps online
mixing tool for internet broadcasts.
An installation made by Staalplaat Soundsystem used flashserver to control the
state of a Flash-animated robot displayed to the user on a 42 inch plasma screen –
that was mounted inside a man-sized fridge – at the European Media Art Festival
2004 in Osnabrück.

Thanks

For all the help and support in getting flashserver developed to it’s current state I
would like to thank August Black, Atau Tanaka, Pall Thayer and Oliver Thuns.
Initial inspiration came from Eric Skogen.

Thanks for providing the Flash MX 2004 example component goes to Leo van der
Veen from Collab.

http://130.208.220.190/panse/
http://www.streaps.org/
http://www.streaps.org/
http://www.staalplaat.org/

The flashserver External

Creating the Object

Technically speaking, flashserver opens a listening network socket on the port
specified as first creation argument and allows as many connections from Flash
clients as the second argument specifies. The default looks like this:

When no creation arguments are specified, the default port number and number of
clients that are shown above will be used. The maximum number of possible
clients is 256 and the port number has to be greater or equal to 1024 to avoid
collision with ports used by the operating system.

On systems that have a firewall installed (like Windows XP SP2) you have to poke
a hole into the firewall for the port you are going to use in order to be able to
connect to your machine over the network.

Inlets and Outlets

As the above image shows, flashserver has one inlet and four outlets. The inlet
receives control messages discussed in the next section.

The outlets – from left to right – have the following functions:

• (anything) Received data from clients.
• (int) Number of currently connected clients.
• (int) Number of client data was received from last.
• (symbol) This client’s IP or hostname.

The client numbers will be in range between 1 and the maximum number of clients
set on object creation. However, in case two clients are connected and client
number 1 disconnects, a newly connecting client will be client number 1 and client
number 2 will keep it’s number.

Supported Methods

Supported methods:

send <client> <argument> (<more args>)

Sends the specified argument(s) to the client specified as first argument. The client
number is the number that can be obtained from the third outlet or using prepend
mode (see below).

broadcast <argument> (<more args>)

The broadcast message is used to send data to all connected clients.

prepend <state>

The prepend message followed by either 1 or 0 turns the prepend mode on or off
(off by default). When prepend is enabled, flashserver prepends the client number
to the received data on output. This feature can be used to route data (using the
route object) depending on which client was sending it.

relay <state>

The relay message followed by either 1 or 0 turns the relay mode on or off (off by
default). When relay is enabled, flashserver relays all incoming data to all
connected clients except the client that was sending it. This mode allows to
distribute data generated by one user to all other connected users without having
to write a complicated Max patch for it. Additionally, it also routes data that
flashserver does not understand and can thus be used to relay ‘hidden’
information on top of the communication between Flash and Max.

remote <state>

The remote message followed by either 1 or 0 turns the remote mode on or off (off
by default). When remote is enabled, flashserver allows to directly send values
from Flash to specified receive objects in Max.
This feature also allows to control Max/MSP by sending data to ‘max’, as one
would normally do in Max using a message ; max paths or similar.

kick <client>

The kick message followed by a client number ‘kicks’ the specified client, i.e. it
closes the connection to it and frees the client number to allow for a new
connection. This will call the XMLSocket.onClose event handler in the Flash
client.

warn <state>

The warn message followed by either 1 or 0 switches warnings (that get printed to
the Max window) on or off. The default is on.

block <mode>

The block message followed by either ‘wait’, ‘ignore’ or ‘kick’ (or 0, 1 or 2)
determines what to do in case client is not ready to receive any data. The default is
‘wait’ which might block flashserver until the client accepts the data (a warning
will be printed to the Max window saying that flashserver blocked for a certain
time).
With ‘ignore’ set, blocked clients get ignored and no data is send. With ‘kick’ the
blocked client gets kicked and thus removed from the client list.

interval <ms>

The interval message followed by a time in milliseconds determines how often
flashserver polls the network for new input. Please note that higher values give
higher responsiveness but also increase the CPU usage. The default value is 5 ms.

print

The print message prints a list of all connected clients containing the client number,
hostname and socket number to the Max window. It also prints the state of some of
flashserver’s internal values.

open <filename>

The open message – which is currently only supported on Windows – allows to
execute any executable file from local disk. It can be used to open a Flash projector
from within the Max patch. Executing Flash Movies (*.swf) is not possible.

Examples

In this section we’ll show some examples, how data exchange between Flash and
Max/MSP actually works. The examples provided require at least Macromedia
Flash 5.0.

The basic functionality of flashserver is to establish a connection between Flash –
be it a standalone projector or a web Plug-In – to communicate with Max/MSP. The
TCP/IP socket connection that gets created by Flash allows to exchange data
between both programs in either direction over local network or the internet. It
thus allows to build interactive web front-ends to Max/MSP or Max-controlled
animations in Flash.

ActionScript and Network Sockets

The basic building block for network communication in Flash is the XMLSocket()
object introduced in Flash 5.0. It allows to establish a network connection to a
server and to handle the data traffic on this connection.

A simple ActionScript example for establishing a connection to the flashserver help
patch running on the same machine as the Flash movie would look like this:

max = new XMLSocket();
max.connect("localhost", 31337); /* establish a connection */
max.onConnect = onMaxConnect; /* function to be called when

 the connection has been made */
max.onClose = onMaxClose; /* function to be called when

 the connection closes */
max.onData = onMaxData; /* function to be called when

 some data arrives */

function onMaxConnect (success) {
if (success) {

msg = "Connection established!";
} else {

msg = "Connection failed!";
}

}

function onMaxClose () {
msg = "Lost connection to server!";

}

function onMaxData (doc) {
msg = "Received data from server: " + doc;

}

Here, the connection is made to "localhost" which is the computer the Flash
movie is run on. Port number is 31337 which is the default for flashserver. To
connect to another machine, the hostname ‘localhost’ could be replaced with any
other hostname or an IP address.

Note: due to security restrictions in Flash, the XMLSocket() method can connect
only to TCP port numbers greater than or equal to 1024. Also, the
XMLSocket()method can connect only to computers in the same subdomain
where the SWF file (movie) resides. This restriction does not apply to movies
running off a local disk.
This means that if you’re planning to connect over the internet you have to run
Max/MSP and flashserver on a machine that is on the same subnet as the web
server that serves the SWF file.

A new feature from version 1.1test4 on allows the use of crossdomain.xml files to
specify security features. You can use such a file (just place one in the Max search
path) to define which IP addresses to allow to connect to flashserver. Check the
supplied file for more details. By using such a file the above mentioned descurity
restrictions can be avoided. To tell Flash to request the security settings add the
Actions Script line

System.security.loadPolicyFile("xmlsocket://flashserverhost.com:31337");

to your code before actually opening the XMLSocket.

After establishing the connection the code example defines some event handlers
that get called by Flash when the connection has been made, closes or some data
arrives. Here, we just change a text that could be used to inform the user about the
state of the connection.

Sending from Flash to Max/MSP

To send any data from Flash to Max/MSP we use the send() method of the
XMLSocket() object. The data format is plain text as one would write it into a
message box in Max/MSP. However, to send data that flashserver can understand,
it has to end with a semicolon. The following example shows how to send a simple
text string to Max/MSP:

max.send("hello 23 foo 17.3;");

max is the XMLSocket() object we already created in the last example. The text
string "hello 23 foo 17.3;" will be output through flashserver’s leftmost
outlet as a list containing (symbol) ‘hello’, (int) 23, (symbol) ‘foo’ and finally (float)
17.3.

Since the data is parsed by Max/MSP and output as a list, it has to conform to
certain Max standards. For example, semicolons or commas as part of the text have
to be escaped using a backslash, like "hello\, foo;". Placeholders that can be
used in Max message boxes (like #1 or $1) are not allowed.

When ‘remote mode’ is activated it is additionally possible to send data to
specified receive objects in the Max patch. The above method works unchanged,
additionally the following code can be used:

max.send("; bla hello 23 foo 17.3;");

Here,the list "hello 23 foo 17.3" comes out the outlet of any receive object
that has the name ‘bla’.

The syntax in Flash follows the normal Max syntax: when a semicolon (;) appears
in a messagebox the first word after the semicolon is interpreted as the name of a
receive object. The rest of the message (in Max) or the string (in Flash) is sent to all
receive objects with that name.
If no arguments follow the receive name, a bang will come out the outlet of any
receive object that has that name.

In case no matching receive object exists in your patch the data will be dropped
without notice. In case remote mode is turned off (which is the default) data will be
dropped as well.

Parsing Data received from Max/MSP

When data is sent from Max/MSP to Flash, it has the same plain text format as the
strings we can send to Max/MSP from within Flash. To brake such a message down
into a set of usable arguments the code shown below has proven quite useful:

function onMaxData(doc)
{

argv = []; // create a new array
doc = doc.substr(0, doc.length - 1); // chop off ';' at the end
argv = doc.split(" "); // split at spaces and convert to array
argc = argv.length; // get number of elements in array

for(i = 0; i < argc; i++) // loop through all arguments
{

msg += "argument "+ i +" is "+ argv[i];
}

}

In case an argument is know to be of integer type, the Flash function
parseInt(argv[i]); could be used to obtain the integer value.

Another useful code snippet is the one to navigate a MovieClip to a given position.
Imagine you have a MovieClip called clip1 that has several frames. The message
"clip1 23" sent from Max/MSP would now cause this MovieClip to start
playing from frame number 23:

clip = argv[0]; // get name of MovieClip
frame = argv[1]; // get the frame number
_root[clip].gotoAndPlay(frame);

These two simple examples should give you an impression how to control Flash
using flahserver. Experienced Flash users will of course be able to find several
other ways to get Flash controlled.

Installation

System Requirements

This software is for use with Max/MSP 4.3 (and probably later). Separate versions
are available for the Windows version and the Mac OS X version of Max/MSP.
Max/MSP prior to version 4.3 or Max/MSP on Mac OS 9 is not supported.

The supplied Flash files are in Flash 5.0 format. However, some examples require
Macromedia Flash MX or even Macromedia Flash MX 2004 because they make use
of new features, like Flash Components.

The latest flashserver release can always be found at
http://www.nullmedium.de/dev/flashserver/.

Installing flashserver

The installation of flashserver follows the standard Max/MSP ways. After
extracting the archive, the object can be found in either the build-mac or build-
win folders, depending on the operating system you’re using.
There is a separate version for Max/MSP 4.5 available in the build-max45 folder
that was compiled using ProjectBuilder instead of Metrowerks CodeWarrior. It
basically provides the same functionality as the ‘traditional’ version and is only
provided for testing purposes. Further tests have to show whether it makes any
difference performance-wise.

To permanently install flashserver, copy the object (flashserver or flashserver.mxe)
from the corresponding build folder into the externals folder of your Max
distribution (under ‘Application Support’ on Mac or ‘Common Files’ on Windows).
Copy the help patch (flashserver.help) into the max-help folder of your Max
distribution.

On systems that have a firewall installed (like Windows XP SP2) you have to poke
a hole into the firewall for the port you are going to use in order to be able to
connect to your machine over the network.

http://www.nullmedium.de/dev/flashserver/

License

License Agreement

The Software is provided by Olaf Matthes (hereinafter referred to as the
ʺAUTHORʺ), free of charge and may be distributed free of charge, provided that
this documentation is included unchanged with the software. You may not sell the
software, nor may you take a fee or commission for providing the software to
another person, nor may you include the software with or as part of other software
that is sold for a fee without prior written permission from the Author. Source
code for the software, if provided, can be re-used for educational or non-
commercial purposes provided the Author is credited both in the product source
and in the final product. The source code for this software may not be re-used for
commercial purposes without negotiating and obtaining a commercial licensing
agreement from the Author.
Currently, this software needs to be registered with the author, Olaf Matthes, to be
used. Use of this program is illegal if you are not registered. Please note, that
currently this program can only be used for research and experimental purposes
and not for commercial use of any kind. If this program is used without
registration or after a erasure request issued by the Author, the user is responsible
for the illegal use of the program and agrees that any legal actions against the
Author will be redirected to himself (the user) without contradiction.

Disclaimer of Warranty on Software

The software is provided ʺAS ISʺ and without warranty of any kind. The Author
expressly disclaims all warranties, express or implied, including, but not limited to,
the fitness for a particular purpose. The Author does not warrant that the software
will be uninterrupted or error-free, or that defects in the software will be corrected.
Furthermore, The Author does not warrant or make any representations regarding
the use or the results of the use of the software in terms of their correctness,
accuracy, reliability, or otherwise. No oral or written information or advice given
by the Author shall create a warranty or in any way increase the scope of this
warranty. Should the software prove defective, you (and not the author) assume
the entire cost of all necessary servicing, repair or correction of the software, or the
computer system with which it is used.

Limitation of Liability

Under no circumstances, including negligence, shall the Author be liable for any
incidental, special, or consequential damages that result from the use or inability to
use the software, even if the Author has been advised of the possibility of such
damages.

	Overview
	Thanks

	The flashserver External
	Creating the Object
	Inlets and Outlets
	Supported Methods

	Examples
	ActionScript and Network Sockets
	Sending from Flash to Max/MSP
	Parsing Data received from Max/MSP

	Installation
	System Requirements
	Installing flashserver

	License
	License Agreement
	Disclaimer of Warranty on Software
	Limitation of Liability

